National Repository of Grey Literature 3 records found  Search took 0.00 seconds. 
Raman microspectroscopy of living cells and biological tissues
Moudříková, Šárka ; Mojzeš, Peter (advisor) ; Matthäus, Christian (referee) ; Samek, Ota (referee)
Title: Raman microspectroscopy of living cells and biological tissues Author: Šárka Moudříková Department / Institute: Institute of Physics of Charles University Supervisor of the doctoral thesis: doc. RNDr. Peter Mojzeš, CSc., Institute of Physics of Charles University Abstract: Raman microscopy combines Raman spectroscopy with optical confocal microscopy and thus provides information on chemical composition of a sample with a µm3 resolution. In this thesis, Raman microscopy has been used to study microalgae-unicellular photosynthetic organisms that are greatly relevant for the Earth's environment as well as for biotechnological applications. Raman microscopy of photosynthetic organisms struggles with a highly intensive background of the spectra, which is formed by fluorescence of cellular photosynthetic apparatus. In this thesis, we have developed a fast and reliable photobleaching method that suppresses the unwanted background; this method has enabled us to study intracellular distribution of algal biomolecules such as proteins, starch, lipids and polyphosphate. We have investigated an evolution of these structures during a cell cycle of a model microalga Desmodesmus quadricauda. Next, we have developed a method for quantitative analysis of polyphosphate in a cellular culture of a microalga Chlorella...
Raman microspectroscopy of living cells and biological tissues
Moudříková, Šárka ; Mojzeš, Peter (advisor) ; Matthäus, Christian (referee) ; Samek, Ota (referee)
Title: Raman microspectroscopy of living cells and biological tissues Author: Šárka Moudříková Department / Institute: Institute of Physics of Charles University Supervisor of the doctoral thesis: doc. RNDr. Peter Mojzeš, CSc., Institute of Physics of Charles University Abstract: Raman microscopy combines Raman spectroscopy with optical confocal microscopy and thus provides information on chemical composition of a sample with a µm3 resolution. In this thesis, Raman microscopy has been used to study microalgae-unicellular photosynthetic organisms that are greatly relevant for the Earth's environment as well as for biotechnological applications. Raman microscopy of photosynthetic organisms struggles with a highly intensive background of the spectra, which is formed by fluorescence of cellular photosynthetic apparatus. In this thesis, we have developed a fast and reliable photobleaching method that suppresses the unwanted background; this method has enabled us to study intracellular distribution of algal biomolecules such as proteins, starch, lipids and polyphosphate. We have investigated an evolution of these structures during a cell cycle of a model microalga Desmodesmus quadricauda. Next, we have developed a method for quantitative analysis of polyphosphate in a cellular culture of a microalga Chlorella...
Microcrystalline inclusions in microalgae studied via Raman microscopy
Suja, Matyáš ; Mojzeš, Peter (advisor) ; Šloufová, Ivana (referee)
Many freshwater, terrestrial or marine microalgae contain various microcrystalline inclusions that they use in their life cycle. However, the identification of the molecular composition of these inclusions via many physical or chemical methods is often very difficult and susceptible to many measurement errors. Therefore, the chemical composition of these microcrystals in many microalgae has not been determined at all or may be incorrect. One of the high precision methods capable of determining the composition of microcrystalline bodies within microalgae is Raman confocal microscopy. This very promising method of optical vibrational spectroscopy allows rapid and non-destructive molecular analysis of objects. Raman microscopy does not require chemical extraction, modification or other color marking or staining of the sample. Therefore, it can directly measure living cells at various stages of their natural development. The chemical composition of the sample is then characterized by its corresponding Raman vibrational spectrum. The aim of this diploma thesis is to determine the presence of microcrystals in different species of microalgae, study the conditions of their occurrence and identify their chemical composition via Raman microscopy.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.